
A computer-assisted verification of hyperchaos in the Saito hysteresis chaos generator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 9139

(http://iopscience.iop.org/0305-4470/39/29/009)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 03/06/2010 at 04:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/29
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 9139–9150 doi:10.1088/0305-4470/39/29/009

A computer-assisted verification of hyperchaos in the
Saito hysteresis chaos generator

Qingdu Li1 and Xiao-Song Yang2,3

1 Institute for Nonlinear Systems, Chongqing University of Posts and Telecomm.,
Chongqing 400065, People’s Republic of China
2 Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074,
People’s Republic of China

E-mail: qingdu li@163.com and yangxs@cqupt.edu.cn

Received 15 January 2006, in final form 4 June 2006
Published 5 July 2006
Online at stacks.iop.org/JPhysA/39/9139

Abstract
This paper presents a computer-assisted verification of hyperchaos in the
well-known Saito hysteresis chaos generator (SHCG) by virtue of topological
horseshoe theory. By means of interval analysis we find two disjoint compact
subsets in a carefully chosen 3D cross section that can guarantee the existence
of a topological horseshoe for the corresponding third-return Poincaré map.
Numerical studies show that the Poincaré map expands in two directions. It
justifiably indicates that there exists hyperchaos in the SHCG.

PACS numbers: 05.45.−a, 02.20.Pc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past two decades, chaos has been found to be very useful to explain our uncertain
world and it also has great potential in many engineering-oriented applied fields such as power
systems protection, liquid mixing, information sciences. Especially, chaos application in
encryption and communications has been intensively investigated since 1980s [1–6]. Recently,
a field experiment on chaotic communications over a commercial fibre-optic channel shows that
‘information can be transmitted at high bit rates using deterministic chaos in a manner that is
robust to perturbations and channel disturbances unavoidable under real-world conditions’ [6].

Hyperchaos introduced by Rössler [7] is usually characterized as a chaotic attractor with
more than one positive Lyapunov exponent, that is, its dynamics expands not only as a line
segment (one-dimensional expansion) but also as a small area (volume and so on) element
(not less than two-dimensional expansion). Due to this, hyperchaos can exhibit much more
complex dynamics than common chaos with only one positive Lyapunov exponent, so it is
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Figure 1. Saito hysteresis chaos generator.

Figure 2. The characteristics of Nr.

believed that hyperchaos can play a better role in most applications of chaos. Therefore,
hyperchaotic systems and their applications have recently become fields of active research
[2, 4, 8–15].

However, before all these studies of hyperchaos, it must be ensured that the system is
exactly hyperchaotic. Up to now, the only way to verify hyperchaos in continuous time systems
in the literature is by calculating Lyapunov exponents. Unfortunately, this is not reliable
sometimes because the unavoidable errors in computer simulations make numerical chaotic
solutions deviate form their real orbits [16]. So we must find another method. Fortunately,
the well-developed topological horseshoe theory provides a rigorous method to prove the
existence of chaos, which has been investigated extensively in [17–21]. For hyperchaos, the
Poincaré section is �3 dimensions, which makes the problem too hard to find a horseshoe.
However, for a 3D horseshoe, there is only a work on the chaotic Hodgkin–Huxley model
[22], where the expansion is only in one direction.

In this paper, we propose a computer-assisted verification of hyperchaos in the well-known
Saito hysteresis chaos generator (SHCG) by virtue of topological horseshoe theory. The model
was proposed in [9], which is not only a fundamental work of a series of hyperchaotic systems
[23–26], but also of importance to the research in hyperchaotic dynamics, encryption, private
communications and so on [2, 4, 12–14].

This paper is organized as follows: in section 2 we revisit the hyperchaotic system; in
section 3 we recall some aspects of horseshoe theory; in section 4 we present discussions
about the existence of hyperchaos in the SHCG in terms of the horseshoe and in section 5 we
draw conclusions.

2. The Saito hysteresis chaos generator

The SHCG is shown in figure 1, where the nonlinear resistor Nr is characterized by figure 2,
i.e., a three-segment piecewise-linear v–i characteristic. Via the rescalings: x = v1/V,
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Figure 3. The phase plot of (1).

y = v2/V, z = riL/V,w = ri/V, t = t/(rC1), ε = L0/(r
2C1), δ = rg/2, ρ = r2C1/L and

γ = C1/C2, the dimensionless state equations of the SHCG are

ẋ = −z − w, ẏ = γ (2δy + z), ż = ρ(x − y), εẇ = x − h(w) (1)

where

h(w) = w − (|w + 1| − |w − 1|) (2)

with x, y, z and w being the state variables and γ , δ, ρ and ε being the system parameters.
Letting ε tend to zero, the nonlinear resistor Nr and the inductor L originate the jump
phenomenon and hysteresis [9]. By varying the parameters of the SHCG, it is possible
to generate a wide variety of dynamic behaviours such as periodic solutions, quasiperiodic
solutions, chaos and hyperchaos.

In the studies of the SHCG, the parameters are often taken as γ = 1, δ = 1, ρ = 14
and ε = 0.01, and with these parameters the SHCG is hyperchaotic with its attractor illustrated
in figure 3 [4, 9, 23]. To verify this, we will give detailed discussions of the horseshoe
embedded in this hyperchaotic attractor in section 4. Before this, we review some aspects of
a topological horseshoe.

3. Review of topological horseshoe theorem

Before studying the dynamics of the Poincaré map in the next section, we first recall some
aspects of symbolic dynamics.

Let Sm = {0, 1, . . . , m − 1} be the set of nonnegative successive integer from 0 to m − 1.
Let �m be the collection of all bi-infinite sequences with their elements of �m, i.e., every
element s of �m is of the following form:

s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .}, si ∈ Sm.

Now consider another sequence

s̄ = {. . . , s̄−n, . . . , s̄−1, s̄0, s̄1, . . . , s̄n, . . .}, s̄i ∈ Sm.
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The distance between s and s̄ is defined as

d(s, s̄) =
+∞∑
−∞

1

2|i|
|si − s̄i |

1 + |si − s̄i | . (3)

With the distance defined as (3), �m is a metric space, and it is well known that �m is
compact, totally disconnected and perfect [27]. A set having these properties is often defined
as a Cantor set, such a Cantor set frequently appears in the characterization of complex
structure of invariant set in a chaotic dynamical system.

Now define a m-shift map σ : �m → �m as follows:

σ(s)i = si+1. (4)

Proposition 1. The shift map σ satisfies σ(�m) = �m and is continuous. As a dynamical
system defined on �m, σ has the following properties:

(i) σ has a countable infinity of periodic orbits consisting of orbits of all periods;
(ii) σ has an uncountable infinity of aperiodic orbits;

(iii) σ has a dense orbit.

For proofs of the above statements, see [27] (p 443). A consequence of proposition 1 is
that the dynamics generated by the shift map σ is sensitive to initial conditions therefore is
chaotic.

Now we will recall a result on horseshoes theory, which is essential for rigorous verification
of chaoticity of the above hyperchaotic system (1) in terms of horseshoes.

Let X be a metric space, Q is a compact subset of X and f : Q → X is a map satisfying
the assumption that there exist m mutually disjoint compact subsets Q1,Q2, . . . ,Qm of Q,
the restriction of f to each Qi , i.e., f |Qi is continuous.

Definition 1. Let γ be a compact subset of Q, such that for each 1 � i � m, γi = γ ∩ Qi

is nonempty and compact, then γ is called a connection with respect to Q1,Q2, . . . ,Qm.
Let F be a family of connections γ s with respect to Q1,Q2, . . . ,Qm satisfying property
γ ∈ F ⇒ f (γi) ∈ F . Then F is said to be an f -connected family with respect to
Q1,Q2, . . . ,Qm

Theorem 1. Suppose that there exists an f -connected family with F respect to
Q1,Q2, . . . ,Qm. Then there exists a compact invariant set K ⊂ Q, such that f |K is
semiconjugate to m-shift dynamics.

Here, the semiconjugacy is conventionally defined as follows.

Definition 2. Let M and N be topological spaces, and let p: M → M and q: N → N be
continuous functions. We say that p is topologically semiconjugate to q, if there exists a
continuous surjection h: N → M such that ph = hq.

For details about the proof of the theorem, see [19], and for details of symbolic dynamics
and horseshoe theory, see [27].

4. Cross section and Poincaré map

For the sake of finding the cross section and the Poincaré map, we need first to examine
the equilibrium points and their properties, so that the cross section contains no equilibrium
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Table 1. The equilibrium points of (1).

Equilibrium (o) Eigenvalues (λ1, α ± βi and λ4)

[0, 0, 0, 0]T [1.520 88, 0.743 938 + 5.229 11i, 0.743 938 − 5.229 11i, 98.9912]T

[−2,−2, 4,−4]T [0.546 43, 0.222 41 + 5.0826i, 0.222 41 − 5.0826i,−98.991]T

[2, 2,−4, 4]T [0.546 43, 0.222 41 + 5.0826i, 0.222 41 − 5.0826i,−98.991]T

points and the Poincaré map makes sense. The equilibrium points and the eigenvalues of the
linearization (Jacobian matrix) of (1) at these points are listed in table 1.

For clarity, we turn the coordinates of (1) a certain angle (0.301 414 366 1339 rad) via the
transformation

x = [x1, x2, x3, x4]T = H [x, y, z,w]T (5)

where H is the following orthogonal matrix:



−0.009 216 137 775 232 −0.296 867 818 9175 0.954 874 107 3543 0
−0.004 328 087 731 346 0.954 917 559 9503 0.296 839 554 9032 0

0.999 948 163 8871 0.001 397 064 673 894 0.010 085 521 761 38 0
0 0 0 1


 (6)

so that the expanding directions of the following Poincaré map π |a ∪ b almost parallel the
x1ox2 plane. It is obvious that x4 = w.

Now consider the section hyperplane P : x4 = −1, as shown in figure 3. The Poincaré
map π : P → P is chosen as follows: For each x ∈ P, π(x) is taken to be the third-return
point in P under the flow with the initial condition x.

In this section hyperplane, we carefully take two boxes (hexahedrons): the first one is a
with its eight vertices in term of (x1, x2, x3) to be

A1 = (−6.909 544 7256,−0.832 251 7553, 1.012 482 6036),

A2 = (−6.806 751 2482,−0.824 982 1705, 1.012 482 6036),

A3 = (−6.886 743 2633,−0.857 305 8601, 1.012 482 6036),

A4 = (−6.985 051 2072,−0.865 743 7710, 1.012 482 6036),

A5 = (−6.909 544 7256,−0.832 251 7553, 1.010 482 6036),

A6 = (−6.806 751 2482,−0.824 982 1705, 1.010 482 6036),

A7 = (−6.886 743 2633,−0.857 305 8601, 1.010 482 6036),

A8 = (−6.985 051 2072,−0.865 743 7710, 1.010 482 6036)

and the second one is b with its eight vertices in term of (x1, x2, x3) to be

B1 = (−6.116 231 2490,−0.860 200 3445, 1.012 482 6036),

B2 = (−5.781 739 3265,−0.841 100 3270, 1.012 482 6036),

B3 = (−5.969 017 5338,−0.864 233 8886, 1.012 482 6036),

B4 = (−6.186 111 1771,−0.877 283 5900, 1.012 482 6036),

B5 = (−6.116 231 2490,−0.860 200 3445, 1.010 482 6036),

B6 = (−5.781 739 3265,−0.8411003270, 1.010 482 6036),

B7 = (−5.969 017 5338,−0.864 233 8886, 1.010 482 6036),

B8 = (−6.186 111 1771,−0.877 283 5900, 1.010 482 6036),
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Figure 4. The position of box a and box b, where A7 and B7 are hidden behind.

as shown in figure 4. For box a, it is easy to see that the top surface |A1A2A3A4| and the
bottom surface |A5A6A7A8| of a both parallel the x1ox2 plane, and they are both quadrangular.
The other four surfaces of a called the side of a in the following discussions (indicated with
Sa) are all rectangular. For box b, it has the same situation with a, and the side of b is indicated
with Sb.

Under the Poincaré map π , a is sent to its image a′ = π(a) with

A′
1 = π(A1), A′

2 = π(A2), A′
3 = π(A3), A′

4 = π(A4),

A′
5 = π(A5), A′

6 = π(A6), A′
7 = π(A7), A′

8 = π(A8);
and b is sent to its image b′ = π(b) with

B ′
1 = π(B1), B ′

2 = π(B2), B ′
3 = π(B3), B ′

4 = π(B4),

B ′
5 = π(B5), B ′

6 = π(B6), B ′
7 = π(B7), B ′

8 = π(B8).

By means of interval analysis, the following statement can be obtained by numerical
computations:

Proposition 2. For the Poincaré map π corresponding to the cross sections Q � a ∪ b, there
exists a closed invariant set � ⊂ Q for which π |� is semiconjugate to the 2-shift map.

Proof. To prove this statement, we will find two disjoint compact subsets of Q, such that the
existence of a π -connected family can be easily derived.

The first subset takes a as shown in figures 5–7. From these figures, it is easy to see that
the Poincaré map sends this subset to its image a′ as follows:

• The top quadrangular |A1A2A3A4| and the bottom quadrangular |A5A6A7A8| are both
expanded in two directions and wholly transversely intersect box a between |A1A2A3A4|
and |A5A6A7A8| and box b between |B1B2B3B4| and |B5B6B7B8|.

• The surface |A′
1A

′
2A

′
3A

′
4| is upon the surface |A′

5A
′
6A

′
7A

′
8|.

• The side of a, i.e. Sa , is mapped outside of Sa and Sb, as shown in figure 6.

In this case, we say that the image a′ = π(a) lies wholly across the boxes a and b with respect
to the sides of a and b, i.e. Sa and Sb.

The second subset takes b as shown in figures 8–10. Like the situation for subset, the
Poincaré map sends this subset to its image b′ as follows:
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Figure 5. a′ = π(a) wholly across a and b.
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′
8|.

• The top quadrangular |B1B2B3B4| and the bottom quadrangular |B5B6B7B8| are both
expanded in two directions and wholly transversely intersect box a between |A1A2A3A4|
and |A5A6A7A8| and box b between |B1B2B3B4| and |B5B6B7B8|.

• The surface |B ′
1B

′
2B

′
3B

′
4| is below the surface |B ′

5B
′
6B

′
7B

′
8|.

• The side of b, i.e. Sb, is mapped outside of Sa and Sb, as shown in figure 9.

In this case, we say that the image a′ = π(a) lies wholly across the boxes a and b with
respect to the sides of a and b, i.e. Sa and Sb.

Note that the subsets a and b are mutually disjoint. It is easy to see from the whole
acrossness of π(a) and π(b) with respect to both the sides of a and b that there exists a
π -connected family with respect to a and b. In view of theorem 1, this means that the Poincaré
map π is semiconjugate to a 2-shift map. �
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Figure 8. b′ = π(b) wholly across a and b.

Remark 1. In figures 5 and 8, the numerical computations show that the minimal distance
between π(Sa) and Sa ∪ Sb is greater than 0.23, the minimal distance between π(Sb) and
Sa ∪ Sb is also greater than 0.23, and the minimal distance from the top and bottom surfaces
of a and b to their images is greater than 0.000 95. However, the maximal global error of
computing the Poincaré map π is less than 1 × 10−9, which is so small that figures 5–10 are
believable. Our calculations are outlined as follows.

To calculate the Poincaré map with estimating the accuracy, we utilize the technique
of interval arithmetic (for an overview, see [28]) by using an interval arithmetic package,
called INTLAB: ‘A MATLAB library for interval arithmetic routines’, which is developed by
Rump and available for WINDOWS and UNIX systems. For more details and downloading
see http://www.ti3.tu-harburg.de/rump/intlab. In INTLAB, interval objects (e.g., interval
numbers, interval vectors and interval matrices) work just like the common objects

http://www.ti3.tu-harburg.de/rump/intlab
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(e.g., numbers, vectors and matrices) of MATLAB. So, all variables in our programs are
interval objects

Since (1) is a piecewise-linear system, it can be regarded as a switching system consisting
of three simple continuous subsystems and two switching planes (x4 = +1 and x4 = −1).
So, the Poincaré map π can be regarded as a composition of a series of sub-maps by the
subsystems. Note that each subsystem is linear and has an equilibrium o with the eigenvalues
of the system matrix being λ1, α ± βi and λ4 (table 1). The solutions can be described with

x(t) = PDP −1(x(0) − o) + o, (7)
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where

D =




eλ1t 0 0 0
0 cos(αt) sin(βt) 0
0 −sin(βt) cos(αt) 0
0 0 0 eλ4t


 . (8)

The main steps to compute the image of a point (a tiny interval vector) are as follows:

(i) Find eigenvalues and eigenvectors of the system matrix, calculate P −1 and estimate the
error bounds [29].

(ii) For an initial interval vector x(0), solve the time t when it meets the switching planes and
estimate the error bound.

(iii) Evaluate (7). Replace x(0) with x(t), go to the second step until all sub-maps are computed
over.

To improve accuracy, we use long numbers with approximately 38 decimal digits. This
slows down the performance of our code. It takes about 5 min to compute one tiny interval
vector’s map with 1.6 GHz Pentium M. Since a detailed interval analysis for the 3D Poincaré
map will take an incredibly long time, we use a simplified interval analysis as follows. Figure 5
and 8 are computed by sampling two thousands of equally distributed tiny interval vectors
from each surfaces of a and b. This takes four computers (Pentium IV, 3.0 GHz) about 200 h.
The global errors are all less than 1 × 10−9. We also calculate figures 5 and 8 by sampling
about 106 points without error estimation. And the two results almost exactly match. These
evidences strongly recommend that the global errors are acceptable.

Remark 2. The global picture of the images π(a) and π(b) suggests that π |a and π |b both
expand in two directions. However, it is necessary to show local expansions of π |�. To
confirm this, we compute short-term Lyapunov exponents (SLEs) of 2 × 105 orbits from
randomly chosen points in the intersection set of boxes a and b and their images to π(Q) with
QR-based method [30]. The first two initial vectors for the first two SLEs parallel the section
hyperplane. After days of computation, the minima of the first two Lyapunov exponents are
approximately 0.340 and 0.075, and the last one is near −95. This suggests that the local
expansions are in two directions. Thereby, it justifiably indicates an evidence that the attractor
illustrated in figure 3 is hyperchaotic.

Remark 3. Since the image of the Poincaré map continuously depends on the parameters γ ,
δ, ρ and ε, it can be seen that for them sufficiently close to 1, 1, 14 and 0.01, respectively, the
corresponding Poincaré map still has a π -connected family with respect to some two sets such
as a and b discussed above, thus having a horseshoe and consequently exhibiting hyperchaos.

Remark 4. As was mentioned in the introduction, the numerical accuracy of a Lyapunov
exponent may not be high enough to decide whether or not it is positive. However, the
Lyapunov exponents of the periodic orbits embedded in a given attractor can be computed
with extremely high accuracy. Therefore, one can also draw partial conclusions on Lyapunov
exponents from the embedded periodic orbits, and some approaches have been proposed to
find unstable periodic orbits in a chaotic attractor [31].

5. Conclusions

In this paper, we propose a computer-assisted verification of hyperchaos in the well-known
Saito hysteresis chaos generator (SHCG) by virtue of topological horseshoe theory. To the best
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knowledge of the authors, it seems the first report about finding a horseshoe in a hyperchaotic
system, which tells us that it may be possible in practice to prove the existence of hyperchaos
by the topological horseshoe theory as we do for chaos with only one positive Lyapunov
exponent.
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